Conformal CR positive mass theorem

Pak Tung Ho Sogang University, Korea

2018 Taipei Conference on Geometric Invariance and Partial Differential Equations, Institute of Mathematics, Academia Sinica, Taipei, Taiwan

17th-20th January, 2018

Suppose (M,g) is an *n*-dimensional Riemannian manifold.

Suppose (M,g) is an *n*-dimensional Riemannian manifold.

(M,g) is asymptotically flat if there is a compact subset $K\subset M$ such that M-K is diffeomorphic to $\mathbb{R}^n-\{|x|\leq 1\}$, and the metric g satisfies

Suppose (M,g) is an *n*-dimensional Riemannian manifold.

(M,g) is asymptotically flat if there is a compact subset $K\subset M$ such that M-K is diffeomorphic to $\mathbb{R}^n-\{|x|\leq 1\}$, and the metric g satisfies

$$g_{ij} = \delta_{ij} + O(|x|^{-\tau}),$$

 $|x||g_{ij,k}| + |x|^2|g_{ij,kl}| = O(|x|^{-\tau})$

for some $\tau > (n-2)/2$. Here, $g_{ij,k}$ and $g_{ij,kl}$ are the covariant derivatives of g_{ij} .

Suppose (M,g) is an *n*-dimensional Riemannian manifold.

(M,g) is asymptotically flat if there is a compact subset $K \subset M$ such that M-K is diffeomorphic to $\mathbb{R}^n-\{|x|\leq 1\}$, and the metric g satisfies

$$g_{ij} = \delta_{ij} + O(|x|^{-\tau}),$$

 $|x||g_{ij,k}| + |x|^2|g_{ij,kl}| = O(|x|^{-\tau})$

for some $\tau > (n-2)/2$. Here, $g_{ij,k}$ and $g_{ij,kl}$ are the covariant derivatives of g_{ij} .

We also require

$$R_g = O(|x|^{-q})$$

for some q > n.

The ADM mass of (M, g) is defined as

$$m_{ADM} = \frac{1}{4(n-1)\omega_{n-1}} \lim_{\Lambda \to \infty} \int_{\{|x|=\Lambda\}} \sum_{i,j=1}^{n} (g_{ij,i} - g_{ii,j})$$

Here, ω_{n-1} is the volume of the (n-1)-dimensional unit sphere.

The ADM mass of (M, g) is defined as

$$m_{ADM} = \frac{1}{4(n-1)\omega_{n-1}} \lim_{\Lambda \to \infty} \int_{\{|x|=\Lambda\}} \sum_{i,j=1}^{n} (g_{ij,i} - g_{ii,j})$$

Here, ω_{n-1} is the volume of the (n-1)-dimensional unit sphere.

Example: (\mathbb{R}^n, δ) is asymptotically flat. The ADM mass of (\mathbb{R}^n, δ) is zero.

Theorem (Positive Mass Theorem)

If (M,g) is asymptotically flat with $R_g \geq 0$, then $m_{ADM} \geq 0$ and equality holds if and only if $(M,g) \equiv (\mathbb{R}^n, \delta)$.

Theorem (Positive Mass Theorem)

If (M,g) is asymptotically flat with $R_g \geq 0$, then $m_{ADM} \geq 0$ and equality holds if and only if $(M,g) \equiv (\mathbb{R}^n, \delta)$.

When $3 \le n \le 7$, Schoen-Yau (1979, 1981) proved the positive mass theorem by using minimal hypersurfaces.

Theorem (Positive Mass Theorem)

If (M,g) is asymptotically flat with $R_g \ge 0$, then $m_{ADM} \ge 0$ and equality holds if and only if $(M,g) \equiv (\mathbb{R}^n, \delta)$.

When $3 \le n \le 7$, Schoen-Yau (1979, 1981) proved the positive mass theorem by using minimal hypersurfaces.

When (M, g) is spin, Witten (1981) proved the positive mass theorem by using spinor.

Theorem (Positive Mass Theorem)

If (M,g) is asymptotically flat with $R_g \ge 0$, then $m_{ADM} \ge 0$ and equality holds if and only if $(M,g) \equiv (\mathbb{R}^n, \delta)$.

When $3 \le n \le 7$, Schoen-Yau (1979, 1981) proved the positive mass theorem by using minimal hypersurfaces.

When (M, g) is spin, Witten (1981) proved the positive mass theorem by using spinor.

Recently, Schoen-Yau claimed to prove the positive mass theorem in general.

W. Simon (1999) proved the following:

Theorem (Conformal Positive Mass Theorem)

If (M, \tilde{g}) and (M, g) are 3-dimensional asymptotically flat Riemannian manifolds with $\tilde{g} = \phi^4 g$ such that $R_g - \phi^4 R_{\tilde{g}} \geq 0$,

W. Simon (1999) proved the following:

Theorem (Conformal Positive Mass Theorem)

If (M,\tilde{g}) and (M,g) are 3-dimensional asymptotically flat Riemannian manifolds with $\tilde{g}=\phi^4g$ such that $R_g-\phi^4R_{\tilde{g}}\geq 0$,

$$m_{ADM}(g) - m_{ADM}(\tilde{g}) \geq 0$$

W. Simon (1999) proved the following:

Theorem (Conformal Positive Mass Theorem)

If (M, \tilde{g}) and (M, g) are 3-dimensional asymptotically flat Riemannian manifolds with $\tilde{g} = \phi^4 g$ such that $R_g - \phi^4 R_{\tilde{g}} \geq 0$,

$$m_{ADM}(g) - m_{ADM}(\tilde{g}) \geq 0$$

and equality holds if and only if (M, \tilde{g}) and (M, g) are isometric.

W. Simon (1999) proved the following:

Theorem (Conformal Positive Mass Theorem)

If (M, \tilde{g}) and (M, g) are 3-dimensional asymptotically flat Riemannian manifolds with $\tilde{g} = \phi^4 g$ such that $R_g - \phi^4 R_{\tilde{g}} \geq 0$,

$$m_{ADM}(g) - m_{ADM}(\tilde{g}) \geq 0$$

and equality holds if and only if (M, \tilde{g}) and (M, g) are isometric.

Taking $M = \mathbb{R}^3$ and $\tilde{g} = \delta$. Then we have:

Theorem

If $(\mathbb{R}^3, g = \phi^{-4}\delta)$ is 3-dimensional asymptotically flat manifold such that $R_g \geq 0$, then $m_{ADM}(g) \geq 0$

W. Simon (1999) proved the following:

Theorem (Conformal Positive Mass Theorem)

If (M, \tilde{g}) and (M, g) are 3-dimensional asymptotically flat Riemannian manifolds with $\tilde{g} = \phi^4 g$ such that $R_g - \phi^4 R_{\tilde{g}} \geq 0$,

$$m_{ADM}(g) - m_{ADM}(\tilde{g}) \ge 0$$

and equality holds if and only if (M, \tilde{g}) and (M, g) are isometric.

Taking $M = \mathbb{R}^3$ and $\tilde{g} = \delta$. Then we have:

Theorem

If $(\mathbb{R}^3, g = \phi^{-4}\delta)$ is 3-dimensional asymptotically flat manifold such that $R_g \geq 0$, then $m_{ADM}(g) \geq 0$ and equality holds if and only if (M,g) is flat.

Suppose (N, J, θ) be a 3-dimensional CR manifold with a contact structure ξ and a CR structure $J: \xi \to \xi$ such that $J^2 = -1$.

Suppose (N, J, θ) be a 3-dimensional CR manifold with a contact structure ξ and a CR structure $J: \xi \to \xi$ such that $J^2 = -1$.

Let T be the unique vector field such that

$$\theta(T) = 1$$
 and $d\theta(T, \cdot) = 0$.

Also, let Z_1 be vector field such that

$$JZ_1 = iZ_1$$
 and $JZ_{\overline{1}} = -iZ_{\overline{1}}$.

Suppose (N, J, θ) be a 3-dimensional CR manifold with a contact structure ξ and a CR structure $J: \xi \to \xi$ such that $J^2 = -1$.

Let T be the unique vector field such that

$$\theta(T) = 1$$
 and $d\theta(T, \cdot) = 0$.

Also, let Z_1 be vector field such that

$$JZ_1 = iZ_1$$
 and $JZ_{\overline{1}} = -iZ_{\overline{1}}$.

Let $(\theta, \theta^1, \theta^{\overline{1}})$ be dual to $(T, Z_1, Z_{\overline{1}})$ so that

$$d\theta = ih_{1\overline{1}}\theta^1 \wedge \theta^{\overline{1}}$$

with $h_{1\overline{1}} = 1$.

The connection 1-form ω_1^1 and the torsion are determined by

$$\begin{split} d\theta^1 &= \theta^1 \wedge \omega_1^1 + A_{\overline{1}}^{\underline{1}} \theta \wedge \theta^{\overline{1}}, \\ \omega_1^1 &+ \omega_{\overline{1}}^{\overline{1}} &= 0. \end{split}$$

The connection 1-form ω_1^1 and the torsion are determined by

$$\begin{split} d\theta^1 &= \theta^1 \wedge \omega_1^1 + A_{\overline{1}}^1 \theta \wedge \theta^{\overline{1}}, \\ \omega_1^1 &+ \omega_{\overline{1}}^{\overline{1}} &= 0. \end{split}$$

The Tanaka-Webster curvature is given by

$$d\omega_1^1 = R\theta^1 \wedge \theta^{\overline{1}}(\mathsf{mod}\theta).$$

Example: The Heisenberg group $\mathbb{H}^1 = \{(z, t) : z \in \mathbb{C}, t \in \mathbb{R}\}$, $J_0 : \mathbb{C} \to \mathbb{C}$ the standard complex structure, and

$$\stackrel{\circ}{\theta} = dt + izd\overline{z} - i\overline{z}dz.$$

Then

$$\overset{\circ}{Z}_{1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i \overline{z} \frac{\partial}{\partial t} \right), \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - i z \frac{\partial}{\partial t} \right).$$

$$\overset{\circ}{\theta^{1}} = \sqrt{2} dz, \overset{\circ}{\theta^{\overline{1}}} = \sqrt{2} d\overline{z}.$$

The Tanaka-Webster curvature R=0.

 (N,J,θ) is called asymptotically flat pseudohermitian if there is a compact subset $K\subset N$ such that N-K is diffeomorphic to $\mathbb{H}^1-\{\rho\leq 1\}$, such that

 (N,J,θ) is called asymptotically flat pseudohermitian if there is a compact subset $K\subset N$ such that N-K is diffeomorphic to $\mathbb{H}^1-\{\rho\leq 1\}$, such that

$$\theta = (1 + 4\pi A \rho^{-2} + O(\rho^{-3})) \overset{\circ}{\theta} + O(\rho^{-3}) dz + O(\rho^{-3}) d\overline{z},$$

$$\theta^{1} = O(\rho^{-3}) \overset{\circ}{\theta} + O(\rho^{-4}) d\overline{z} + (1 + 2\pi A \rho^{-2} + O(\rho^{-3})) \sqrt{2} dz$$

for some constant A. Here,

$$\rho = \sqrt[4]{|z|^4 + t^2}.$$

 (N,J,θ) is called asymptotically flat pseudohermitian if there is a compact subset $K\subset N$ such that N-K is diffeomorphic to $\mathbb{H}^1-\{\rho\leq 1\}$, such that

$$\theta = (1 + 4\pi A \rho^{-2} + O(\rho^{-3})) \overset{\circ}{\theta} + O(\rho^{-3}) dz + O(\rho^{-3}) d\overline{z},$$

$$\theta^{1} = O(\rho^{-3}) \overset{\circ}{\theta} + O(\rho^{-4}) d\overline{z} + (1 + 2\pi A \rho^{-2} + O(\rho^{-3})) \sqrt{2} dz$$

for some constant A. Here,

$$\rho=\sqrt[4]{|z|^4+t^2}.$$

We also require that the Tanaka-Webster curvature $R \in L^1(N)$, i.e. $\int_N |R| \theta \wedge d\theta < \infty$.

The *p*-mass of (N, J, θ) is defined as

$$m(J,\theta) = i \lim_{\Lambda \to \infty} \oint_{\{\rho = \Lambda\}} \omega_1^1 \wedge \theta.$$

The *p*-mass of (N, J, θ) is defined as

$$m(J,\theta) = i \lim_{\Lambda \to \infty} \oint_{\{\rho = \Lambda\}} \omega_1^1 \wedge \theta.$$

Example: The Heisenberg group $(\mathbb{H}^1,J_0,\overset{\circ}{\theta})$ is an asymptotically flat pseudohermitian manifold with p-mass $m(J_0,\overset{\circ}{\theta})=0$.

Cheng-Malchiodi-Yang (2017) proved the following:

Theorem (CR Positive Mass Theorem)

If (N, J, θ) is a 3-dimensional asymptotically flat pseudohermitian manifold with $R \geq 0$ and the CR Paneitz operator is nonnegative, then its p-mass

$$m(J,\theta) \geq 0.$$

Cheng-Malchiodi-Yang (2017) proved the following:

Theorem (CR Positive Mass Theorem)

If (N, J, θ) is a 3-dimensional asymptotically flat pseudohermitian manifold with $R \geq 0$ and the CR Paneitz operator is nonnegative, then its p-mass

$$m(J,\theta)\geq 0.$$

Equality holds if and only if $(N, J, \theta) = (\mathbb{H}^1, J_0, \overset{\circ}{\theta})$.

The CR Paneitz operator P is given by

$$P\varphi:=4(\varphi_{\overline{1}}^{\overline{1}}{}_1+\mathit{i} A_{11}\varphi^1)^1.$$

The CR Paneitz operator P is given by

$$P\varphi:=4(\varphi_{\overline{1}}^{\overline{1}}{}_{1}+\mathit{i}A_{11}\varphi^{1})^{1}.$$

The CR Paneitz operator is nonnegative if

$$\int_{N} \varphi P \varphi \theta \wedge d\theta \ge 0$$

for all $\varphi \in C^{\infty}(N)$.

The CR Paneitz operator P is given by

$$P\varphi:=4(\varphi_{\overline{1}}^{\overline{1}}{}_{1}+\mathit{i}A_{11}\varphi^{1})^{1}.$$

The CR Paneitz operator is nonnegative if

$$\int_{N} \varphi P \varphi \theta \wedge d\theta \geq 0$$

for all $\varphi \in C^{\infty}(N)$.

Fact: If the torsion $A_{11}=0$, then the CR Paneitz operator is nonnegative.

Idea of the proof of CR Positive Mass Theorem:

Let $\beta: N \to \mathbb{C}$ be a smooth function such that

$$\beta = \overline{z} + \beta_{-1} + O(\rho^{-2+\epsilon})$$
 near ∞ .

Idea of the proof of CR Positive Mass Theorem:

Let $\beta: N \to \mathbb{C}$ be a smooth function such that

$$\beta = \overline{z} + \beta_{-1} + O(\rho^{-2+\epsilon})$$
 near ∞ .

Then one has the integral formula for the p-mass:

$$\frac{2}{3}m(J,\theta) = -\int_{N} |\Box_{b}\beta|^{2}\theta \wedge d\theta + 2\int_{N} |\beta_{,11}|^{2}\theta \wedge d\theta + 2\int_{N} R|\beta_{,\overline{1}}|^{2}\theta \wedge d\theta + \frac{1}{2}\int_{N} \overline{\beta}P\beta\theta \wedge d\theta.$$

Idea of the proof of CR Positive Mass Theorem:

Let $\beta: N \to \mathbb{C}$ be a smooth function such that

$$\beta = \overline{z} + \beta_{-1} + O(\rho^{-2+\epsilon})$$
 near ∞ .

Then one has the integral formula for the p-mass:

$$\frac{2}{3}m(J,\theta) = -\int_{N} |\Box_{b}\beta|^{2}\theta \wedge d\theta + 2\int_{N} |\beta_{,11}|^{2}\theta \wedge d\theta + 2\int_{N} R|\beta_{,\overline{1}}|^{2}\theta \wedge d\theta + \frac{1}{2}\int_{N} \overline{\beta}P\beta\theta \wedge d\theta.$$

Hsiao-Yung proved that there exists β such that $\Box_b \beta = 0$.

Question: Is the assumption on the CR Paneitz operator necessary?

Question: Is the assumption on the CR Paneitz operator necessary?

Answer: Yes.

There exists some (N, J, θ) such that the CR Paneitz operator is not nonnegative, and its *p*-mass is negative.

We have the following Conformal CR Positive Mass Theorem:

Theorem (H. 2017)

If $(N, J, \tilde{\theta})$ and (N, J, θ) are 3-dimensional asymptotically flat pseudohermitian manifolds with $\tilde{\theta} = \phi^2 \theta$ such that $R - \phi^4 \tilde{R} \ge 0$,

We have the following Conformal CR Positive Mass Theorem:

Theorem (H. 2017)

If $(N,J,\tilde{\theta})$ and (N,J,θ) are 3-dimensional asymptotically flat pseudohermitian manifolds with $\tilde{\theta}=\phi^2\theta$ such that $R-\phi^4\tilde{R}\geq 0$,

$$m(J,\theta)-m(J,\tilde{\theta})\geq 0$$

We have the following Conformal CR Positive Mass Theorem:

Theorem (H. 2017)

If $(N,J,\tilde{\theta})$ and (N,J,θ) are 3-dimensional asymptotically flat pseudohermitian manifolds with $\tilde{\theta}=\phi^2\theta$ such that $R-\phi^4\tilde{R}\geq 0$,

$$m(J,\theta)-m(J,\tilde{\theta})\geq 0$$

and equality holds if and only if $\tilde{\theta} = \theta$.

We have the following Conformal CR Positive Mass Theorem:

Theorem (H. 2017)

If $(N,J,\tilde{\theta})$ and (N,J,θ) are 3-dimensional asymptotically flat pseudohermitian manifolds with $\tilde{\theta}=\phi^2\theta$ such that $R-\phi^4\tilde{R}\geq 0$,

$$m(J,\theta)-m(J,\tilde{\theta})\geq 0$$

and equality holds if and only if $\tilde{\theta} = \theta$.

Remark: There is no assumption on the CR Paneitz operator.

We have the following Conformal CR Positive Mass Theorem:

Theorem (H. 2017)

If $(N,J,\tilde{\theta})$ and (N,J,θ) are 3-dimensional asymptotically flat pseudohermitian manifolds with $\tilde{\theta}=\phi^2\theta$ such that $R-\phi^4\tilde{R}\geq 0$,

$$m(J,\theta)-m(J,\tilde{\theta})\geq 0$$

and equality holds if and only if $\tilde{\theta} = \theta$.

Remark: There is no assumption on the CR Paneitz operator.

Take $N=\mathbb{H}^1$ and $\widetilde{ heta}=\overset{\circ}{ heta}$ in the above theorem. We have:

Theorem

If $(\mathbb{H}^1, \overset{\circ}{J}, \theta = \phi^{-2}\overset{\circ}{\theta})$ is an asymptotically flat pseudohermitian manifold such that $R \geq 0$, then $m(J, \theta) \geq 0$ and equality holds if and only if $\theta = \overset{\circ}{\theta}$.

CR Yamabe problem: On a CR manifold (M, θ_0) , find a contact form θ conformal to θ_0 such that $R_{\theta} \equiv \text{constant}$.

CR Yamabe problem: On a CR manifold (M, θ_0) , find a contact form θ conformal to θ_0 such that $R_{\theta} \equiv \text{constant}$.

To solve the CR Yamabe problem, one tries to find the minimizer of the energy:

$$E(u) = \frac{\int_{M} \left((2 + \frac{2}{n}) |\nabla_{b} u|^{2} + R_{\theta_{0}} u^{2} \right) dV_{\theta_{0}}}{\left(\int_{M} u^{2 + \frac{2}{n}} dV_{\theta_{0}} \right)^{\frac{n}{n+1}}}$$

▶ CR Yamabe problem was solved by Jerison and Lee (1987) when $n \ge 2$ and M is not spherical.

- ▶ CR Yamabe problem was solved by Jerison and Lee (1987) when $n \ge 2$ and M is not spherical.
- ▶ Gamara and Yacoub (2001) considered the remaining cases, i.e. when M is spherical or n = 1.

- ▶ CR Yamabe problem was solved by Jerison and Lee (1987) when $n \ge 2$ and M is not spherical.
- ▶ Gamara and Yacoub (2001) considered the remaining cases, i.e. when M is spherical or n = 1.
- ► CR Yamabe problem (2014) was solved by Cheng-Chiu-Yang when *M* is spherical.

- ▶ CR Yamabe problem was solved by Jerison and Lee (1987) when $n \ge 2$ and M is not spherical.
- ▶ Gamara and Yacoub (2001) considered the remaining cases, i.e. when M is spherical or n = 1.
- ► CR Yamabe problem (2014) was solved by Cheng-Chiu-Yang when *M* is spherical.
- ▶ CR Yamabe problem (2017) was solved by Cheng-Malchiod-Yang when n=1 by using CR positive mass theorem.

- ▶ CR Yamabe problem was solved by Jerison and Lee (1987) when $n \ge 2$ and M is not spherical.
- ▶ Gamara and Yacoub (2001) considered the remaining cases, i.e. when M is spherical or n = 1.
- ► CR Yamabe problem (2014) was solved by Cheng-Chiu-Yang when *M* is spherical.
- ▶ CR Yamabe problem (2017) was solved by Cheng-Malchiod-Yang when n=1 by using CR positive mass theorem.

Remark: Recall, there exists M such that the CR Paneitz operator is not nonnegative and its p-mass is negative. The minimizer may not exist on such M.

CR Yamabe flow is given by:

$$\frac{\partial}{\partial t}\theta(t) = -(R_{\theta(t)} - \overline{R}_{\theta(t)})\theta(t),$$

where

$$\overline{R}_{\theta(t)} = \frac{\int_{M} R_{\theta(t)} dV_{\theta(t)}}{\int_{M} dV_{\theta(t)}}.$$

CR Yamabe flow is given by:

$$\frac{\partial}{\partial t}\theta(t) = -(R_{\theta(t)} - \overline{R}_{\theta(t)})\theta(t),$$

where

$$\overline{R}_{\theta(t)} = \frac{\int_{M} R_{\theta(t)} dV_{\theta(t)}}{\int_{M} dV_{\theta(t)}}.$$

► Chang-Cheng (2002) proved the short time existence.

CR Yamabe flow is given by:

$$\frac{\partial}{\partial t}\theta(t) = -(R_{\theta(t)} - \overline{R}_{\theta(t)})\theta(t),$$

where

$$\overline{R}_{\theta(t)} = \frac{\int_{M} R_{\theta(t)} dV_{\theta(t)}}{\int_{M} dV_{\theta(t)}}.$$

- ► Chang-Cheng (2002) proved the short time existence.
- ▶ Zhang (2009) proved the long time existence and convergence when $Y(M, \theta_0) < 0$.

CR Yamabe flow is given by:

$$\frac{\partial}{\partial t}\theta(t) = -(R_{\theta(t)} - \overline{R}_{\theta(t)})\theta(t),$$

where

$$\overline{R}_{\theta(t)} = \frac{\int_{M} R_{\theta(t)} dV_{\theta(t)}}{\int_{M} dV_{\theta(t)}}.$$

- ▶ Chang-Cheng (2002) proved the short time existence.
- ▶ Zhang (2009) proved the long time existence and convergence when $Y(M, \theta_0) < 0$.
- ▶ When $Y(M, \theta_0) > 0$, Chang-Chiu-Wu (2010) proved the long time existence and convergence when n = 1 and torsion is zero.

Theorem (H. 2012)

CR Yamabe flow exists for all time when $Y(M, \theta_0) > 0$.

Theorem (H. 2012)

CR Yamabe flow exists for all time when $Y(M, \theta_0) > 0$.

Theorem (H. 2012)

Suppose $M = \mathbb{S}^{2n+1}$. If $\theta(t)|_{t=0}$ is conformal to $\theta_{\mathbb{S}^{2n+1}}$, then CR Yamabe flow $\theta(t)$ converges to $\theta_{\mathbb{S}^{2n+1}}$.

Theorem (H. 2012)

CR Yamabe flow exists for all time when $Y(M, \theta_0) > 0$.

Theorem (H. 2012)

Suppose $M = \mathbb{S}^{2n+1}$. If $\theta(t)|_{t=0}$ is conformal to $\theta_{\mathbb{S}^{2n+1}}$, then CR Yamabe flow $\theta(t)$ converges to $\theta_{\mathbb{S}^{2n+1}}$.

Using the CR positive mass theorem, we can prove:

Theorem (H. 2012)

CR Yamabe flow exists for all time when $Y(M, \theta_0) > 0$.

Theorem (H. 2012)

Suppose $M = \mathbb{S}^{2n+1}$. If $\theta(t)|_{t=0}$ is conformal to $\theta_{\mathbb{S}^{2n+1}}$, then CR Yamabe flow $\theta(t)$ converges to $\theta_{\mathbb{S}^{2n+1}}$.

Using the CR positive mass theorem, we can prove:

Theorem (H.-Sheng-Wang 2017)

If (M, θ_0) is spherical or dimM = 3 such that the CR Paneitz operator is nonnegative, then CR Yamabe flow $\theta(t)$ converges.

Thank you very much for your attention!